If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+12x-200=0
a = 4; b = 12; c = -200;
Δ = b2-4ac
Δ = 122-4·4·(-200)
Δ = 3344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3344}=\sqrt{16*209}=\sqrt{16}*\sqrt{209}=4\sqrt{209}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{209}}{2*4}=\frac{-12-4\sqrt{209}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{209}}{2*4}=\frac{-12+4\sqrt{209}}{8} $
| 3-7c+3c=-18 | | 12^2=+b^2=20^2 | | E=`(3x+7)(2x−1)+4x | | 4g+0.7=3.6.7 | | 3-(2-x)+1=292 | | 8a³-6a+1=0 | | -3y+36=3(y+2) | | 2×-1=7y+44 | | 4(v+2)-8v=-4 | | 7x-12=3x14 | | 92=-3+c | | 92=-3(1)+c | | x+1x+-1=44² | | x+1=x+-1=44² | | 1=-3(91)+c | | 8(x-3)+x-5=50 | | 43x4=172 | | (5y+11)=(13y-5) | | 8.14=999/x | | 8-16=x | | 10x+10+7x-6/2=140 | | 17x*2=140 | | 0.5=16/x | | x+1.2=3.7 | | 8*2x+4=7*1+3x | | 2/3m-0.5m+4=7 | | 2(4x+1)=-3(3x-3)+4x | | 7x-24+57-2x=x | | 5k+16=11k-8 | | 3^x^-2=9^2x | | -5t=-65 | | 3y+11=4y+16 |